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HYDROGEN SULFIDE SEPARATION FROM
GAS STREAMS USING SALT HYDRATE
CHEMICAL ABSORBENTS AND
IMMOBILIZED LIQUID MEMBRANES

R. Quinn, J. B. Appleby, and G. P. Pez

Corporate Science and Technology Center, Air Products
and Chemicals, Inc., 7201 Hamilton Boulevard,
Allentown, PA 18195-1501

ABSTRACT

The salt hydrate tetramethylammonium fluoride tetrahydrate,
[(CH3)4N]F-4H,0, in the liquid state reversibly absorbs large
quantities of hydrogen sulfide, for example 0.30 mol H,S per
mole of salt at 50°C and 100kPa. Gas absorption likely occurs
by deprotonation of H,S to form bisulfide, HS ', and bifluoride,
HF, . The equilibrium constant for the reaction of H,S with
[(CH3),N]JF-4H,0 is 1.4X 10 2kPa~' at 50°C as determined
from absorption/desorption data. The heat of H,S absorption
was surprisingly low, —0.78 kcalmol ', A second salt hydrate,
tetracthylammonium acetate tetrahydrate, [(C,Hs)4N]JCH3;CO,
-4H,0, also reversibly absorbs H,S but with a lower affinity.
However, at higher pressures, its H,S capacity increases more
than does that of [(CH3)4,N]JF-4H,0 making it more suitable for
use as a pressure swing absorbent. Absorption/desorption data
are consistent with reaction of one mole of [(C,Hs),N]JCHj;.
CO,-4H,0 for each mole of H,S and an equilibrium constant
of 6.4x10 *kPa~'mol H,S per mole of salt. Membranes
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consisting of liquid [(CH3)4N]F-4H,O immobilized in a
microporous support exhibit selective permeation of H,S from
CH, and CO,. Permeabilities of H,S increased with decreasing
feed pressure, consistent with facilitated transport of H,S. The
H,S/CH,4 selectivities ranged from 140 to 34 and decreased with
increasing feed pressure while H,S/CO, selectivities were 8—6.
The presence of H,S in the feed tends to suppress permeation of
CO,, implying that both gases compete for the same carrier
species.

INTRODUCTION

The separation of acid gases, principally CO, and H,S, from H,, CO, and
CH,4 containing streams and air is of considerable industrial importance and
incurs substantial processing costs (1,2). Our previous efforts in this area have
been directed primarily toward the removal of CO, from gas mixtures using salt
hydrate based absorbents and membranes (3—7). Salt hydrates which reversibly
absorb large amounts of CO, have relatively basic anions, fluoride or
carboxylate, coupled with monovalent cations, and fewer than about six moles
of bound water per mole of cation. For example, tetramethylammonium fluoride
tetrahydrate, [(CH3)4N]F-4H,0, at 50°C and 100 kPa absorbs 0.28 mol CO,per
mole of salt (6). Salt hydrates such as [(CH3)4N]F-4H,O proved useful in the
development of immobilized liquid membranes which selectively permeate CO,
from H, and CH4-containing gas mixtures (3—5).

Perhaps more important and certainly more challenging are separations
involving hydrogen sulfide, particularly where selectivity vs. CO, is desired.
Typical applications are the removal of H,S from various refinery process
streams and in its separation from wellhead natural gas (1,2). Hydrogen sulfide
removal is most often accomplished by the use of chemical absorbents,
particularly alkanolamines. Although alkanolamines are effective for H,S
removal, rather substantial heat energy is required to regenerate the gas-free
absorbent. Our interest in the development of more energy efficient and selective
alternatives for H,S removal led to an evaluation of salt hydrates.

RESULTS AND DISCUSSION
Hydrogen Sulfide Absorbents

Molten tetramethylammonium fluoride tetrahydrate, [(CH;3)4N]F-4H,O0,
was found to absorb relatively large amounts of H,S. For example, at 100 kPa and
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Figure 1. The H,S absorption/desorption isotherm of [(CH3),N]F-4H,O at 50°C; W,
absorption; @, desorption.

50°C, 0.30 mol H,S per mole of salt were taken up. This corresponds to an H,S
concentration of about 2.0 M as compared to 0.06 M H,S in water at the same
temperature and pressure (8)*. The H,S absorption/desorption isotherm of liquid
[(CH3)4N]F-4H,0 was determined at 50°C (Fig. 1). Absorption and desorption
data points fall along the same smooth curve implying that absorption is fully
reversible. The nonlinear dependence of absorption capacity on pressure and the
magnitude of gas absorbed strongly imply that H,S undergoes a reversible
chemical reaction with the salt hydrate. The H,S and CO, isotherms of [(CH3)4.
N]F-4H,0 are comparable in shape as illustrated by Fig. 2. However, hydrogen
sulfide capacities are generally slightly greater than those for CO,; for example,
0.31 mol H,S per mole of salt and 0.28 mol CO,per mole of salt at 100 kPa.

To simplify analytical procedures, a F~ -containing salt hydrate which
exists as a liquid at room temperature was used to characterize the H,S absorption
products. The salt used was benzyltrimethylammonium fluoride containing
3.7 mol water per mole of salt (9). For analysis, a sample containing 0.42 mol H,S
per mole of salt at 149.4 kPa was prepared. The '°’F NMR spectrum of the liquid
containing absorbed H,S indicated the presence of bifluoride, HF, (9), and

*The concentration of H,S was calculated by assuming that the volume of the melt was
unchanged upon H,S absorption and that the density of solid and liquid [(CH3)4N]F-4H,O
are the same, 1.126 g/mL (see Ref. 10).
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Figure 2. A comparison of the H,S (M) and CO, (curve only) absorption/desorption
isotherms of [(CH3)4,N]F-4H,O at 50°C. For clarity, CO, data points are omitted.

implies that H,S absorption occurs by an acid—base reaction (Eq. 1) forming
bisulfide, HS™. Absorption of CO, occurs via an analogous pathway (Eq. 2)
yielding bicarbonate and HF, (6).

2F -nH,0 + H,S = HS™ + HF, -2nH,0 (1)

2F~-nH,0 + CO, = HCO; + HF; -(2n — H,0 2)

This reactivity of [(CH3)4;N]JF-4H,O is a consequence of the strong
hydrogen bonds between fluoride ions and water molecules in this limited water
environment. The resulting, partially deprotonated water exhibits an enhanced
Bronsted and Lewis basicity. It is this enhanced basicity which results in
deprotonation of H,S to HS™ and hydration of CO, to HCOj5 . In water or dilute
fluoride salt solutions, however, the much more limited absorption of H,S and
CO, is largely the consequence of their purely physical solubility in these media.

The H,S absorption/desorption isotherm of [(CH3)4N]F-4H,O (Fig. 1) is
consistent with the stoichiometry of Eq. (1). Capacity—pressure data were
adequately fitted to Eq. (3) which consists of a Henry’s law term representing the
H,S physical solubility and a second term representing the H,S chemical capacity
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of the salt hydrate.
capacity = kP + [K'/?P'/2 /(1 + bK'/?P1/?)] (3)

In Eq. (3), kis a Henry’s law constant, K is the equilibrium constant for Eq.
(1), and b is the reciprocal of the chemical capacity at infinite H,S pressure. If Eq.
(1) is strictly obeyed, the value of b is 2 or the maximum capacity is 0.5 mol gas
per mole of salt. As described previously for absorption of CO,, (6) allowing
some perturbation of this maximum capacity the following best-fit values were
obtained along with estimated errors: k, 1.0 +0.7x 10 *kPa™"mol H,S per
mole of salt; K, 1.4 =0.4 X 10_2kPa_1; b, 2.5+ 0.2 or a maximum chemical
capacity of 0.40 mol H,S per mole of salt. The calculated physical solubility of
0.069 M at 100 kPa and 50°C is comparable to the H,S solubility in water, 0.06 M,
under the same conditions. The curve in Fig. 1 was calculated based on these
parameters and, considering the relatively large estimated errors, the fit to the
experimental data is quite satisfactory. As expected from the isotherm
comparison in Fig. 2, the equilibrium constant for CO, absorption (6), Keq =
7.2 X 1073kPa~!, is lower than the above for H,S.

The H,S heat of absorption for [(CH;)4N]JF-4H,O was surprising low,
—0.78 kcalmol ' Tt is believed that this low heat is a consequence of the
relatively strong fluoride—water hydrogen bonds in [(CH3)4N]F-4H,O (10).
Reaction with H,S requires some disruption of this hydrogen bonded network
and, hence, the net heat of reaction can be viewed as the sum of the exothermic
reaction of H,S with the salt hydrate and the endothermic breaking of F —H,O
hydrogen bonds. The widely used acid gas absorbents, alkanolamines, have much
larger heats for H,S absorption. For the primary, secondary, and tertiary amines
of mono, di, and triethanolamine, the heats are 11.6, 9.6, and 8.1 kcal per mole of
H,S, respectively (2). Thus, regeneration to the gas free salt hydrate absorbent is
expected to be more energy efficient than the regeneration of a typical
alkanolamine. It is more likely, however, that [(CH;3)4N]F-4H,0O would be better
suited to use as a pressure-swing absorbent, for which the low heat is also an
advantage. Absorption and desorption pressures of 400 and 50 kPa, respectively,
would permit a working capacity of 0.12 mol H,S per mole of salt hydrate for
H,S separation.

Another salt hydrate, one which is also more suitable for use as a pressure
swing absorbent, is tetracthylammonium acetate tetrahydrate, [(C,Hs)4N]CH;.
CO,-4H,0. Its absorption/desorption isotherm (Fig. 3) shows that it has a lower
H,S affinity than [(CH3)4,N]JF-4H,O but its absorption capacity at higher
pressures surprisingly continues to increase while that of [(CH3)4N]F-4H,O0 is
nearly constant. The result is that [(C,Hs5)4NJCH;CO,-4H,0 has a greater H,S
working capacity. Thus, for an absorption pressure of 400kPa and desorption
pressure of 50 kPa, the working capacity is 0.19 mol H,S per mole of salt hydrate.

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INC. ﬂ
270 Madison Avenue, New York, New York 10016 o



10: 37 25 January 2011

Downl oaded At:

ORDER £b REPRINTS
632 QUINN, APPLEBY, AND PEZ

e T T B e e T

0.6 ]

% ]
hid r ]
° 04 3
E r ° ]
#, .
T .
] r ]
£ L ]
0.2 1
00 | IS SR N WSS (ST ST S Y A NN H S S N N NS SN UN N AT OOV SN | ]

0 100 200 300 400 500 600 700 800

H_S pressure, kPa

Figure 3. The H,S absorption/desorption isotherm of [(C,H5)4N]JCH3CO,-4H,O at
50°C; W, absorption; @, desorption.

If the desorption pressure is raised to 100 kPa, the working capacity is still greater
than that of [(CH3)4N]F-4H,0, 0.16 mol H,S per mole of salt hydrate. At a higher
absorption pressure, 600kPa, along with desorption at 50kPa, the working
capacity is substantially greater, 0.27 mol H,S per mole of salt hydrate.

Capacity—pressure data for [(C,Hs5)4N]JCH3CO,-4H,O could not be
adequately described by Eq. (3). Although a reasonable fit of the data was
obtained, the H,S physical solubility was unreasonably large, 0.18 M at 100 kPa
and 50°C. Therefore, capacity—pressure data were fitted using the 1:1 reaction
stoichiometry of Eq. (4).

CH3CO; l’leO + st =HS + CH3C02HHH20 (4)

Again, data were fitted to a two term expression, a Henry’s law term and a
chemical capacity term. The following best fit values and estimated errors were
obtained: k£, 1.6 =0.5X 10"*kPa~ ' mol H,S per mole of salt; K,
6.4+0.8%10 *kPa 'mol H,S per mole of salt. The calculated physical
solubility is now reasonable, 0.067 M at 50°C and 100 kPa.

Absorption of CO, by [(C,H;5)4N]JCH5CO,-4H,0 was also best described
by the 1:1 reaction stoichiometry of Eq. (5) with an equilibrium constant of
27610 *kPa 'mol CO, per mole of salt (6). A comparison of the

Copyright © Marcel Dekker, Inc. All rights reserved.
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absorption/desorption isotherms for H,S and CO, of
CH3CO, -nH,0 + CO, = HCO; + CH3CO,H:(n — 1)H,0O &)

[(C,H5)4N]JCH5CO,-4H,0 (Fig. 4) indicates that the salt has a higher affinity for
H,S in agreement with the above equilibrium constant values.

A unique property of [(C,Hs)4NJCH;CO,-4H,O0 is the unusual temperature
dependence of its H,S absorption capacity. As previously reported, (11) cooling
[(C,H5)4N]JCH3CO,-4H,0 containing 0.298 mol H,S per mole of salt hydrate
from 50 to 26°C resulted in solidification of the absorbent and near quantitative
desorption of H,S. This modest temperature change can be used as an “on/off”
switch for gas absorption, and an alternative method for the removal of H,S from
gas streams.

Facilitated Transport Membranes

Salt hydrates can also be used as the reactive material in facilitated
transport membranes as previously reported for separations of CO, from methane
and hydrogen (3,4). Membranes consisting of liquid [(CH;3)4N]F-4H,0O
immobilized in the microporous polypropylene support, Celgard 3401% (Celgard
Inc., Charlotte, NC, were evaluated for the separation of H,S from CH, and CO,
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Figure 4. A comparison of the H,S (@) and CO, (M) absorption/desorption isotherms of
[(C2H5)4N]CH3C024H20 at 50°C.
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at 50°C. Permeation testing was performed using humidified feed and sweep gas
streams of about equal concentrations of H,S and CO, in CHy. The dew point of
the feed and sweep gases were the same, 10°C, or a relative humidity of
approximately 10%. As shown in Table 1, the permeability of CH, was largely
independent of its feed partial pressure, consistent with its transport by a
solution—diffusion mechanism. The permeability of H,S and CO,, however,
were dependent on their feed partial pressures. Figure 5 clearly shows that
decreasing the partial pressure of either gas results in increased permeabilities.
Such a pressure dependence is consistent with permeation by a facilitated
transport mechanism (12) involving the reversible reaction of the gas and salt
hydrate. The H,S/CH,4 selectivity ranged from 140 to 34 and decreased with
increasing feed pressure. The H,S/CO, selectivity was greater than that generally
observed for conventional polymeric membranes, 4, (13—16) and ranged from
about 8 to 6.

Facilitated transport of H,S involves reaction of the gas with [(CHj)4.
N]F-4H,0 as represented by Eq. (1). At the feed interface where the H,S pressure
is highest, Eq. (1) proceeds in the forward direction and H,S is deprotonated to
form bisulfide and bifluoride ions. These ions diffuse across the membrane to the
low pressure permeate side of the membrane where Eq. (1) proceeds in the
reverse direction and H,S is liberated into the gas phase. That, in addition to HF,
ions, deprotonation of H,S results in HF is unlikely based on the experimental
results. Hydrogen fluoride is sufficiently volatile that if formed it would be
removed from the membrane in the sweep stream. This would result in a change

Table 1. Permselective Properties of a [(CH3)4N]F-4H20/Celgard®
Membrane at 50°C

P, (Barrers)?* Selectivity

Feed Pressure (kPa) H,S CO, CH,4 H,S/CO, H,S/CH,4

115.8 813 109 5.8 7.5 140
180.5 443 54 4.3 8.2 102
268.7 282 35 7.4 8.0 38
3335 227 32 6.7 7.2 34
469.3 192 30 5.7 6.4 34

Conditions: Feed—5.13% H,S, 5.10% CO, in CHy, 10.0sccm; sweep-
helium, 10.0 sccm; feed and sweep gases passed through water bubbler at
10°C; 9.95% relative humidity.

21 Barrer = 10> scem cm/em? sec cmHg.
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MaRcEL DEKKER, INC. ﬂ
270 Madison Avenue, New York, New York 10016 o



10: 37 25 January 2011

Downl oaded At:

ORDER i REPRINTS

HYDROGEN SULFIDE SEPARATION 635
1000 ———78Mm8 ——— 1+

800 - —
o [ :
2 : H,S .
&S 600 N ]
g 400 - ]
o i |
£ i ]
a o 4
200 -
[ co, ]
ol—— .‘T\T\’-_T_T_T'f__fiT—T—T—T__T”! L

0 5 10 15 20

feed partial pressure, cmHg
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in the membrane permselectivity properties with time and no such change was
observed.

As has been noted previously for fluoride-containing polyelectrolyte
membranes, (9) the presence of H,S in the feed tends to suppress permeation of
CO,. Figure 6 shows that the CO, permeability in the absence of H,S is 10—
20-fold greater than that in its presence implying that both gases permeate by a
common facilitated transport pathway and compete for the same carrier species,
(12,16) hydrated fluoride ions. Considering that the equilibrium constants for
reaction of [(CH3)4N]F-4H,O with H,S and CO, are of comparable magnitude,
that H,S competes more effectively for the carrier species cannot be ascribed
only to reaction thermodynamics. Rather, the preference for permeation of H,S
over CO, is likely due to reaction kinetics. Permeation of CO, requires a
relatively slow hydration step (CO, to HCO;) compared with the fast
deprotonation of H,S to HS .

CONCLUSIONS

Tetramethylammonium fluoride tetrahydrate reversibly absorbs relatively
large amounts of H,S; for example, 0.30 mol H,S per mole of salt at 100 kPa and
50°C. Absorption of H,S occurs by an acid—base reaction resulting in its
deprotonation to form bisulfide, HS , and bifluoride, HF; , with an equilibrium
constant (K for Eq. (1)) of 1.4X 107%2kPa " at 50°C. Another salt hydrate,
tetracthylammonium acetate tetrahydrate, also absorbs H,S reversibly. Although
it has a lower affinity for H,S, its isotherm is more “linear” and thus more suitable
for use as a pressure swing absorbent for the recovery of H,S from process gas
streams. Absorption occurs by a one-to-one reaction stoichiometry with an
equilibrium constant of 6.4 x 10~ *kPa~"-mol H,S per mole of salt. Membranes
consisting of liquid [(CH53),N]F-4H,0 immobilized in Celgard 3401® selectively
permeate H,S from gas mixtures by a facilitated transport mechanism. The
H,S/CHy, selectivities ranged from 140 to 34 and decreased with increasing feed
pressure. The presence of H,S in the membrane feed tends to suppress permeation
of CO,, implying that the two gases compete for a common carrier species.

EXPERIMENTAL
Materials
The salts [(CH3)4N]F-4H,0 and [(C,H5),;N]JCH;CO,-4H,O were obtained

from Aldrich Chemical Company, Milwaukee, WI and were used without further
purification.

Copyright © Marcel Dekker, Inc. All rights reserved.
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Methods

The H,S absorption/desorption isotherms were determined using standard
manometric techniques similar to those previously described for CO, (6). A
known quantity of the tetramethylammonium fluoride was added to a stainless
steel reaction vessel and attached to a manifold of known volume. The reaction
vessel was maintained at a constant temperature and the contents were stirred. In-
line pressure transducers were used to determine pressures. The volume of the
system available to gas was determined by expansion of helium from the manifold
at known pressure into the reaction vessel. The water vapor pressure of the salt
hydrate was determined by exposing the melt to a static vacuum and allowing the
pressure to reach equilibrium. It was assumed that the vapor pressure remained
constant throughout the experiment and subsequent H,S pressures were corrected
accordingly. Heats of absorption were obtained as described previously (6).

Membranes consisting of liquid salt hydrates supported in Celgard 3401®
were prepared as described previously (3). The methods and apparatus used to
determine permselective properties have been described in detail elsewhere (3).
A pre-mixed feed gas, 10 sccm, was passed over one surface of the membrane
while a stream of helium, 10sccm, was passed over the other surface. Gas
streams were humidified by passage through a series of water bubblers
maintained at 10°C. The composition of the permeate stream was analyzed at
regular intervals using gas chromatography (GC). Membrane area was 3.77 cm?
and membrane thickness was 2.5 X 10> cm, the thickness of the Celgard 3401%
support. Permeabilities were corrected for the porosity and tortuosity of the
support, 0.50 and 1.25, respectively.
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